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Abstract

Streamflow modeling is an enormously challenging problem, due to the complex and
nonlinear interactions between climate inputs and landscape characteristics over a
wide range of spatial and temporal scales. A basic idea in streamflow studies is to es-
tablish connections that generally exist, but attempts to identify such connections are
largely dictated by the problem at hand and the system components in place. While nu-
merous approaches have been proposed in the literature, our understanding of these
connections remains far from adequate. The present study introduces the theory of
networks, and in particular complex networks, to examine the connections in stream-
flow dynamics, with a particular focus on spatial connections. Monthly streamflow data
observed over a period of 52 years from a large network of 639 monitoring stations
in the contiguous United States are studied. The connections in this streamflow net-
work are examined using the concept of clustering coefficient, which is a measure of
local density and quantifies the network’s tendency to cluster. The clustering coefficient
analysis is performed with several different threshold levels, which are based on cor-
relations in streamflow data between the stations. The clustering coefficient values of
the 639 stations are used to obtain important information about the connections in the
network and their extent, similarity and differences between stations/regions, and the
influence of thresholds. The relationship of the clustering coefficient with the number of
links/actual links in the network and the number of neighbors is also addressed. The
results clearly indicate the usefulness of the network-based approach for examining
connections in streamflow, with important implications for interpolation and extrapola-
tion, classification of catchments, and predictions in ungaged basins.

1 Introduction

Streamflow forms an important input for a wide range of applications in hydrology, wa-
ter resources, environment, and ecosystem. However, its estimation or prediction is
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an enormously challenging problem, since streamflow arises as a result of complex
and nonlinear interactions between climate inputs (external factors) and landscape
characteristics (internal factors) that occur over a wide range of spatial and tempo-
ral scales. For instance, streamflow is governed not only by the distribution of rainfall
(in both space and time) but also by the nature and state of the catchment (e.g. topog-
raphy, vegetation, soil, geology); see Beven (2006) for a compilation of, and stimulating
insight into, some early “benchmark” studies (1933—-1984) on streamflow generation
processes. Attempts to monitor, model, and predict streamflow have been a central
topic in hydrology during the last century or so; see, for example, Salas et al. (1995),
Grayson and Bléschl (2000), Duan et al. (2003), Mishra and Coulibaly (2009), and Hra-
chowitz et al. (2013) for comprehensive accounts on streamflow monitoring, modeling,
and prediction.

Despite their efforts and contributions, studies on streamflow have and continue to
encounter at least two major challenges: (1) determination of the locations, number,
and density of streamflow gaging stations for monitoring data and representation of pro-
cess variability; and (2) identification of the appropriate scientific concepts and mathe-
matical techniques/models for a more solid conceptual understanding of the catchment
systems, proper analysis of the data, and reliable interpretation of the outcomes. It is
true that recent developments in measurement technology, computational power, and
mathematical sophistication have generally played an important role in overcoming
these challenges to a certain extent. It can also not be denied, however, that the same
developments have, at times, played an indirect role in creating imbalance and hinder-
ing true progress, as they have contributed to the perhaps unnecessary complexifica-
tion in models (rather than simplification), highly specialized conceptual notions that
are often suitable only for specific situations (rather than generalization frameworks
that suit all conditions), difficult-to-bridge gaps between theory and practice, and lack
of communication among researchers as well as between researchers and practition-
ers; see, for example, Perrin et al. (2001), Beven (2002), Kirchner (2006), Sivakumar
(2008), and Young and Ratto (2009) for some details.
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It is important to recognize that a fundamental idea in streamflow (and other hy-
drologic) studies is to establish connections that generally exist between the different
elements or items (known or assumed) of the underlying system. Depending upon
the situation (e.g. catchment, purpose, problem), these elements include hydroclimatic
variables, catchment characteristics, model parameters, and others (and their com-
binations), and their connections are often different with respect to space, time, and
space-time. Unraveling the nature and extent of these connections has always been
a great challenge, not to mention the challenge in the identification of all the rele-
vant elements in the first place. Thus far, a plethora of concepts and methods has
been proposed and applied for studying the connections associated with streamflow,
including those based on time, distance, correlation, variability, scale, patterns, and
many other properties/measures as well as their combinations and variants, in both
single-variable and multi-variable perspectives; see, for example, Gupta et al. (1986),
Salas et al. (1995), Grayson and Bléschl (2000), Yang et al. (2004), Archfield and Vogel
(2010), and Li et al. (2012) for some details. Despite the progress made through these
concepts and methods, our understanding of the connections in streamflow is still far
from adequate.

In view of this, there is indeed a need to greatly advance our studies on stream-
flow connections. Some important current and foreseeable future problems, including
our ever-increasing demands for water, the potential impacts of climate change on wa-
ter security and hydroclimatic disasters, and the numerous issues associated with the
management of our environment and ecosystems, further reflect the urgency to this
need. A greater understanding of streamflow connections will also enhance our recent
and current efforts in the estimation of data at ungaged locations (e.g. predictions in
ungaged basins — PUB) (see Hrachowitz et al., 2013) and development of a generaliza-
tion framework for hydrologic modeling (e.g. catchment classification) (see Sivakumar
et al., 2014), among others. The question, however, remains on the identification of
a suitable theory that can help bring advancement to studies on streamflow connec-
tions. In this regard, recent developments in the field of complex systems science can
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offer some crucial clues. The present study introduces the theory of complex networks,
or simply networks, for studying connections in streamflow. In particular, the study fo-
cuses on spatial connections in streamflow.

The origin of the concept of networks can be traced back to the works of Leonhard
Euler, during the first half of the eighteenth century, on the Seven Bridges of Kénigs-
berg (Euler, 1741), which laid the foundations of what would become popularly known
as graph theory. Graph theory witnessed several important theoretical developments
in the nineteeth century, including topology (originally introduced as topologie in Ger-
man) (Listing, 1848) and trees (Cayley, 1857). Further significant advances were made
during the twentieth century, especially with the development of random graph theory
by Erdés and Rényi (1960). The concepts of graph theory, and random graph theory
in particular, have found a wide variety of applications in humerous fields, including
linguistics, physics, chemistry, biology, sociology, engineering, economics, and ecol-
ogy; see, for example, Berge (1962), Bondy and Murty (1976), and Bollobas (1998) for
extensive reviews.

Despite the above-mentioned developments and applications, studies on graph the-
ory, including random graph theory, had some major deficiencies. First, the studies
largely focused on networks that are regular, simple, small, and static. As a result,
they are generally unsuitable for examining real networks, as such networks are of-
ten highly irregular, complex, large, and dynamically evolving in time. Second, even
while examining complex and large-scale networks, they assumed that such networks
are wired randomly together (Erdés and Rényi, 1960). Such an assumption, however,
is not necessarily valid for real networks, since order and determinism are inherent
in real systems and networks. Indeed, real networks are neither completely ordered
nor completely random, but generally exhibit important properties of both. These ob-
servations motivated a renewed and fresh look of random graph theory towards the
end of the last century (e.g. Watts and Strogatz, 1998; Barabasi and Albert, 1999),
and gave birth to a new movement of interest and research in studying real and com-
plex networks, under the umbrella of the new science of networks. They also led to
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new discoveries about complex networks, including small-world networks (Watts and
Strogatz, 1998), scale-free networks (Barabasi and Albert, 1999), network motifs (Milo
et al., 2002), as well as other notable advances, such as a new method for identifying
community structure (Girvan and Newman, 2002). Since then, the science of networks
has found applications in many different fields, including natural and physical sciences,
social sciences, medical sciences, economics, and engineering and technology (e.g.
Albert et al., 1999; Bouchaud and Mézard, 2000; Newman, 2001; Liljeros et al., 2001;
Tsonis and Roebber, 2004; Davis et al., 2013). In hydrology, applications of networks
are just starting to emerge, and so far include river networks, virtual water trade, pre-
cipitation, and agricultural pollution due to international trade, among others (Rinaldo
et al., 2006; Suweis et al., 2011; Dalin et al., 2012; Boers et al., 2013; Scarsoglio et al.,
2013). In a very recent study, Sivakumar (2014) has argued that networks can be use-
ful for studying all types of connections in hydrology and, hence, can provide a generic
theory for hydrology.

With the encouraging results reported by the above studies, the present study ex-
plores the usefulness of the theory of networks for studying connections in stream-
flow, especially the spatial connections. To this end, monthly streamflow data observed
over a period of 52 years (1951-2002) from each of 639 gaging stations in the con-
tiguous United States are studied. The connections are examined using the concept
of clustering coefficient. The clustering coefficient is a measure of local density and,
hence, quantifies the tendency of a network to cluster. The implications of the cluster-
ing coefficient results for interpolation/extrapolation of streamflow data as well as for
classification of catchments are also discussed.

The rest of this paper is organized as follows. Section 2 introduces the concept
of networks and describes the procedure for calculation of the clustering coefficient in
a network. Section 3 presents details of the study area and streamflow data considered.
Section 4 reports the results, first from the traditional linear correlation analysis and
then from the network-based clustering coefficient analysis. Section 5 highlights the
implications of the results.
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2 Network and clustering coefficient
2.1 Network

A network or a graph is a set of points connected together by a set of lines, as
shown in Fig. 1. The points are referred to as vertices or nodes and the lines are
referred to as edges or links; here, the term nodes are used for points and the term
links are used for lines. Mathematically, a network can be represented as G = {P,E},
where P is a set of N nodes (P;,P,,...,Py) and E is a set of n links. The network
shown in Fig. 1 has N =7 (nodes) and n =38 (links), with P ={1,2,3,4,5,6,7} and
E = {{1,7},{2,3},{2,5},{2,7},{3,7},{4,7},{5.6},{6.7}}.

Figure 1 is perhaps the simplest form of network, i.e. one with a set of identical
nodes connected by identical links. There are, however, many ways in which networks
may be more complex. For instance, a network: (1) may have more than one different
type of node and/or link, (2) may contain nodes and links with a variety of properties,
such as different weights for different nodes and links depending on the strength of
nodes and connections, (3) may have links that can be directed (pointing in only one
direction), with either cyclic (i.e. containing closed loops of links) or acyclic form, (4)
may have multilinks (i.e. repeated links between the same pair of nodes), self-links (i.e.
links connecting a node to itself), and hyperlinks (i.e. links connecting more than two
nodes together); and (5) may be bipartite, i.e. containing nodes of two distinct types,
with links running only between unlike types.

There are many different ways and measures to study the characteristics of net-
works. In the context of the modern theory of complex networks (which also include
random graphs), three concepts are prominent: (1) clustering coefficient, (2) small-
world networks; and (3) degree distribution. As the present study uses the concept of
clustering coefficient for studying streamflow connections, it is described next.
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2.2 Clustering coefficient

The clustering coefficient quantifies the tendency of a network to cluster, which is one
of the most fundamental properties of networks (Watts and Strogatz, 1998). The clus-
tering coefficient of a network is basically a measure of local density. The concept
of clustering has its origin in sociology, under the name “fraction of transitive triples”
(Wasserman and Faust, 1994). The procedure for calculating the clustering coefficient
is as follows.

Let us consider first a selected node / in the network, having k; links which connect it
to k; other nodes. For illustration, Fig. 2 presents a network consisting of eight nodes,
with the node / having four links (see Fig. 2, left). The four nodes corresponding to
these four links are the neighbors of node 7; the neighbors are identified based on
some conditions (e.g. correlation between node / and other nodes in the network). If
the neighbors of the original node (/) were part of a cluster, there would be k;(k; - 1)/2
links between them. As shown in Fig. 2 (right), there are 4(4 —1)/2 =6 links in the
cluster of node /. The clustering coefficient of node / is then given by the ratio between
the number E; of links that actually exist between these k; nodes (shown as solid lines
on Fig. 2, right) and the total number k;(k; — 1)/2 (i.e. all lines on Fig. 2, right),

c 2E; )

" oki(ki =)

The clustering coefficient of the whole network C is the average of the clustering coef-
ficients C;’s of all the individual nodes.

The clustering coefficient of a random graph is C = p (where p is the probability of
two nodes being connected), since the links in a random graph are distributed ran-
domly. However, the clustering coefficient of real networks is generally much larger
than that of a comparable random network (i.e. having the same number of nodes and
links as the real network). Therefore, the clustering coefficient analysis offers useful
information about the nature of the network and, hence, the appropriate model (e.g.
level of complexity), among others.
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3 Study area and data

In the present study, streamflow data from the United States are studied to explore the
usefulness of the theory of networks for identifying connections in streamflow, with a fo-
cus on spatial connections. Monthly data from an extensive network of 639 streamflow
gaging stations in the contiguous US are studied. The locations of these 639 stations
are shown in Fig. 3. The streamflow data are obtained from the US Geological Survey
database (http://nwis.waterdata.usgs.gov/nwis). Streamflow data in the US are com-
monly expressed in “water years,” which commence in October. The data used in this
study are those observed over a period of 52 years (October 1951—-September 2003),
and are average monthly values.

During the past few decades, a large number of studies have investigated the above
streamflow dataset (or a part or variant of it) in many different contexts (e.g. Slack
and Landwehr, 1992; Kahya and Dracup, 1993; Tootle and Piechota, 2006; Sivakumar
and Singh, 2012). Some of these studies have explicitly addressed the connections of
streamflow, although with large-scale climatic patterns and relevant indices, including
El-Nino, La-Niha, Southern Oscillation Index (SOI), Pacific North America (PNA) Index,
and Pacific Decadal Oscillation (PDO). However, within the specific context of the net-
work analysis for connections among streamflow stations presented here, as well as in
the broader context of complex systems science for streamflow analysis, the study by
Sivakumar and Singh (2012) is worth mentioning, as it has addressed the aspects of
streamflow variability, nonlinearity, and dominant governing mechanisms, especially for
studies on model simplification, data interpolation/extrapolation, and catchment classi-
fication framework.

The above 639 streamflow stations and the observed streamflow data exhibit tremen-
dous variations in their characteristics, often by about four orders of magnitude. For
instance: (1) basin drainage area ranges from 10.62 km? (4.1 mi2) to 35224 km?
(13600 mi2), (2) station eIevatlon ranqes from Om to 2996m (9830 ft) (8) mean flow
ranges from 0.0549 m3s” (1 941t s ) to 381.59 m3s” (13476 ftls™ ) (4) maximum
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flow ranges from 0.878 m>s™" (31ft°s™") to 2489 m>s™' (87900ft>s™"); and (5) num-
ber of zero-flow months ranges from none to 424. Table 1 presents a summary of the
minimum and maximum values of some important characteristics of the stations and
flows, including the corresponding station numbers. Figure 3 presents the variations in
the mean (Fig. 3a), standard deviation (Fig. 3b), and coefficient of variation (Fig. 3c) of
flow values in all the 639 stations. Some important observations are:

— more than half of the 639 stations (340 stations) are small- to medium-sized
basins, i.e. having a drainage area of less than 1000 km? (or approximately
400 mi?);

— 137 stations have zero flows at least for one month, and the remaining 502 sta-
tions always have some flows every month;

— about half of the stations (49 %) have monthly mean flows of less than 10 m3s™

(approximately 350 ftls™ ), while about 4 % of the stations have mean flows more
than 100m°s™" (approximately 3530 ft® s'1). Similar observations are also made
for standard deviation, with about 47 % and 4 %, respectively; and

— half of the stations (50 %) have CV values of flow less than 1.0, with most of
the stations having values 0.5-1.0 are in the east, northeast, and northwest (see
Fig. 3c). Of the remaining half, about one-fifth of the stations (9 % of the total)
have CV values above as high as 2.0.

4 Analysis and results

The usefulness of the theory of networks for studying connections in streamflow is ex-
amined through the clustering coefficient analysis on the monthly streamflow data from
the above 639 stations in the United States. To put the clustering coefficient analysis in
a proper perspective, a preliminary linear correlation-based analysis is also performed.
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4.1 Correlation analysis

A common approach to examine connections between streamflow observed at differ-
ent stations is through a simple linear cross correlation analysis, where the correlation
for any given station is given by the average of its correlation with all the other stations.
Several variants of this procedure are also usually considered. These include: near-
est neighbors — for example, number of nearby stations based on distance or stations
within a pre-defined region of geographic promixity or neighborhood, with equal or
unequal weightage (e.g. inverse distance); and similar stations — stations with similar
properties (e.g. in terms of climate, rainfall, basin characteristics, land use), which may
or may not include nearest stations. These and many other correlation-based proce-
dures (e.g. spline fitting) are routinely employed for interpolation and extrapolation of
streamflow and other hydrologic data.

In this study, two of the above-mentioned procedures are employed for examining
the monthly streamflow from the 639 stations: (1) for each station, the correlation is
the average of its correlation with all the other 638 stations; and (2) for each station,
the correlation is the average of correlations for a certain number of nearest neighbors
— 30, 15, and 5 neighbors. When all the 638 stations are considered, the correlation
values are generally very low, as expected, with only 0.5 % of the stations exceeding
a value of 0.4 (see Fig. 4a). This is mainly due to the consideration of a very large
region, with the stations coming from different climatic, catchment, land use, and other
characteristics. When the number of stations is reduced, the results get generally bet-
ter — see Fig. 4b (30 neighbors), Fig. 4c (15 neighbors), and Fig. 4d (5 neighbors).
Among the three neighborhood cases, the best correlation results are obtained when
the neighborhood is the smallest, i.e. 5 neighbors (Fig. 4d), with a large number of
stations having correlations above 0.7.

While one can study a large number of combinations in terms of the neighborhood,
what is evident from even the very few cases presented here is that there are obvious
regional patterns in terms of correlations, regardless of the number of neighbors. These
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regional patterns are considered to have important implications for a wide range of
studies in hydrology and water resources, as they are commonly used as a basis for
interpolation and extrapolation of streamflow and, subsequently, for water resources
assessment, planning, and management. However, as Sivakumar and Singh (2012)
point out, through their nonlinear dynamic study on streamflow data from the western
United States, the use of regional patterns as basis for streamflow studies may be
misleading, as such patterns are not necessarily a true representation of the actual
connections between the stations but may just be spurious. The obvious question,
therefore, is: how to identify if the connections are actual or spurious? This is where
the ideas from the theory of networks can be particularly useful, as presented next
using the clustering coefficient analysis of the streamflow data from the 639 stations.

4.2 Network analysis — clustering coefficient

The clustering coefficient is calculated for the monthly streamflow data from the net-
work of 639 stations in the United States, according to the procedure described in
Sect. 2. The essence of the procedure for the streamflow data is as follows. For a given
streamflow station or node /, the nearest neighbors k; in the network of 639 stations
(more specifically, the remaining 638 stations) are identified based on a (pre-specified)
threshold value (7). To define the threshold value, the correlations in streamflow data
between different stations are considered as a reasonable measure. With this, if, for
example, the correlation between station / and any other station(s) in the entire net-
work of 639 stations exceeds the threshold value, then that station(s) is considered as
a neighbor(s), k;, for station /. The cluster of these k; neighbors then forms the ba-
sis for identifying the actual connections. Therefore, the actual connections are those
links in the cluster of stations (not just nearest stations) having correlations among
themselves exceeding the threshold value.

In this study, several different threshold values are considered for calculation of
the clustering coefficient. Although there are no definitive guidelines for selection of
the threshold values for streamflow (and other hydrologic) data, our experience in
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streamflow studies, especially spatial and temporal correlations, offers some useful
clues. For instance, streamflow data generally exhibit high spatial correlations (when
compared to rainfall values, for example), especially at the monthly scale. With this
knowledge, and also with the condition that -1 < T < 1.0, closer intervals of values are
considered at the higher end of correlations and vice-versa. In addition, very low val-
ues (say, T < 0.30) and very high values (say, T > 0.85) do not offer much help in the
analysis; for instance, T < 0.30 normally results in a very large number of neighbors,
while T > 0.85 results in a very small number. Considering all these, eight threshold
values are used for analysis: 0.30, 0.40, 0.50, 0.60, 0.70, 0.75, 0.80, and 0.85.

Figure 5a—d shows the clustering coefficient values obtained for the 639 stations for
four different threshold values: 0.70, 0.75, 0.80, and 0.85; in these plots, for better illus-
tration, the clustering coefficient values are grouped into five different ranges. Table 2
presents the number of stations falling under different ranges of clustering coefficient
values. From an overall perspective, the clustering coefficient results indicate certain
similarity at some stations/regions but significant differences at others. They also offer
some specific observations:

— Even nearest stations have significantly different characteristics (e.g. connec-
tions), as part of a network. Some stations have very strong connections, while
others have almost no or only very weak connections. For instance, the few geo-
graphically closer stations in Florida in the southeast region (see Fig. 5a—d) are an
excellent example. Regardless of the threshold, these few stations have clustering
coefficient values varying anywhere from 0 to 1.0.

— Even distant stations have significantly similar characteristics, i.e. they have very
strong (or very weak) connections as part of a network. The similar (very high or
very low) clustering coefficient values obtained for a number of stations all across
the United States, regardless of their geographic promixity, offer evidence to this;
for example, regardless of the threshold value, the green circles (see Fig. 5a—
d), representing the clustering coefficient range 0.8—1.0, are present all over the
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United States, northwest to southwest to midwest to northeast to southeast. Sim-
ilar observations are made also for other clustering coefficient ranges, for one or
more threshold values; see the deep pink circles (C; = 0.60-0.79) and blue circles
(Ci=0);

— There are significant changes in characteristics with respect to the threshold val-
ues. For instance, as can be seen from Fig. 5 and Table 2, for threshold values of
0.7 and 0.85, the number of stations falling within the clustering coefficient range
of 0.9-1.0 is 84 and 156, respectively, whereas that falling within the clustering
coefficient range of 0.7-0.8 is 149 and 80, respectively; and

— Although there are changes in the number of stations having similar clustering
coefficient values with respect to thresholds, there is no consistency in the trend
of changes.

While the usefulness of the clustering coefficient values in assessing connections be-
tween streamflow stations and identifying regions having similarity/differences is abun-
dantly clear, the actual links in the network would certainly offer more specific details
as to where and how connections exist. To facilitate this, Fig. 6 shows the actual links
for four selected streamflow stations (red circles) for threshold values of 0.75 (Fig. 6a),
0.80 (Fig. 6b), and 0.85 (Fig. 6¢); the nodes and links for T = 0.70 are too many, and
so do not offer a good visualization. In each of these plots, for the station of interest
(red circle), a green circle indicates a station that has a correlation coefficient value
exceeding the threshold, and a black circle indicates a station that has a correlation
coefficient value smaller than the threshold. The lines are the actual links among all
the links available for the cluster of neighbors (green circles only). The plots clearly
indicate which stations are actually connected to which other. The plots make it abun-
dantly clear that geographic promixity does not always result in greater correlation, and
the actual links can go for large distances. Among the various observations that can be
made, the ones for the two stations in the northwest are certainly interesting. Despite
being in the same region, the two stations exhibit significantly different connectivity
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characteristics, for example, for threshold level 0.85 (Fig. 6b), with one showing all the
actual connections within a small neighborhood (see the enlarged plot on the top left)
while the other showing no clear neighborhood for connectivity (see the enlarged plot
on the bottom left). The latter station (see bottom left) is an even more curious case, as
most of the neighbors of this station seem to be beyond its (perceived) circle of geo-
graphic influence. The actual links observed for the other threshold values also support
the above observations.

These observations clearly suggest that our usual approach with consideration of ge-
ographic proximity, nearest neighbors, regional patterns, and linear correlation-based
techniques for studying connections in streamflow may have serious limitations. Clus-
tering coefficient, and other network-based techniques, offers a better means to ex-
amine streamflow connections. In what follows, we explore the clustering coefficient
results even further.

As the clustering coefficient of a network is based on the actual links among all links
in the cluster of neighbors of a node (rather than just the links between a node and
its neighbors), it would be interesting to see how it changes with respect to all links
and actual links. To this end, Fig. 7a—d shows the clustering coefficient values against
the number of all links (red circles) and the number of actual links (blue circles) for
threshold values of 0.70, 0.75, 0.80, and 0.85 for the monthly streamflow data from the
United States. The results lead to the following major observations:

— in general, regardless of the threshold value, there is an inverse relationship be-
tween the clustering coefficient and number of links (both for all links and actual
links), i.e. higher clustering coefficient for smaller number of links and vice-versa;

— the inverse relationship between the clustering coefficient and number of links is
generally more evident for lower thresholds (see Fig. 7a and b) when compared to
higher thresholds (see Fig. 7c and d). When the threshold is very high (T = 0.85),
this relationship seems to cease to exist;
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— the clustering coefficient is generally far more sensitive when the number of links
is smaller (see the significant larger spread of circles on the Y-axis), but has only
very little or almost no sensitivity for a larger number of links (see the very narrow
spread followed by a tapering towards a fixed value — especially in Fig. 7a and b).
Further, larger numbers of links almost always give lower clustering coefficients;
and

— for a given number of links, the clustering coefficient for a lower threshold is gen-
erally higher than that for a higher threshold.

Another useful way to look at the clustering coefficient of a network is its relationship
with the number of neighbors (k;), which is defined by the threshold value and dictates
the (number of) links and actual links. Figure 8a—d shows the relationship between the
clustering coefficient values and the number of neighbors for threshold values of 0.70,
0.75, 0.80, and 0.85 for the monthly streamflow data. The results generally indicate an
inverse relationship between the clustering coefficient and number of neighbors, but
such a relationship is far more evident for lower threshold values (see Fig. 8a and b)
than that for higher threshold values (see Fig. 8c and d). Again, the clustering coef-
ficient is generally far more sensitive when the number of neighbors is smaller (see
the larger spread towards the left), but becomes less sensitive for a larger number
of neighbors (see the narrow spread towards the right). These observations are some-
what consistent with those made in regard to the number of links (Fig. 7). It is important
to recall, however, that the neighbors are not necessarily geographic but defined by the
threshold values (as shown in Fig. 6).

While these results and observations are still preliminary in nature, they seem to
suggest that there is a particular threshold value or range beyond which the inverse
relationship between the clustering coefficient and number of neighbors/links/actual
links in the streamflow network may not hold well for monthly streamflow data from the
United States, and streamflow data in general.
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Finally, the question arises as to the type of network. As mentioned previously, the
clustering coefficient of a whole network (C) is the average of the clustering coefficients
C,’s of all the individual nodes. The clustering coefficient of the eight different networks
of the above 639 streamflow stations corresponding to threshold values of 0.30, 0.40,
0.50, 0.60, 0.70, 0.75, 0.80, and 0.85 is 0.79, 0.77, 0.73, 0.71, 0.70, 0.70, 0.68, and
0.67 (see Table 2). These generally high clustering coefficient values seem to sug-
gest that the streamflow monitoring network of 639 stations is not a random graph,
since a (comparable) random graph, where the links are distributed randomly, will have
a typically very low clustering coefficient, i.e. C = p, where p is the probability of two
nodes being connected. As (natural) streamflow dynamics are neither completely ran-
dom (there are inherent deterministic patterns) nor completely ordered (there are in-
herent stochastic components) (see Sivakumar, 2011; Sivakumar and Singh, 2012 for
some details), it is also reasonable to assume that streamflow networks are not random
graphs, but networks of some other nature. Whether they are small-world or scale-free
or other types of networks remains to be seen. Studies in this direction are currently
underway, details of which will be reported in the future.

5 Study implications

One of the basic requirements in studying streamflow dynamics is to identify connec-
tions in space or time or space-time, depending upon the purpose. Although a wide va-
riety of approaches have been developed and applied to identify connections in stream-
flow dynamics, there is no question that significant improvements are still needed. In
this regard, modern developments in the field of network theory, especially complex
networks, offer new avenues, both for their generality about systems and for their holis-
tic perspective about connections.

The present study has made an initial attempt to apply the ideas developed in the
field of complex networks to examine connections in streamflow dynamics, with partic-
ular focus on spatial connections. Application of the concept of clustering coefficient,
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which is a measure of local density and quantifies the tendency of a network to clus-
ter, to monthly streamflow data from a large network of 639 monitoring stations in the
contiguous United States has offered some very interesting results. The clustering co-
efficient values for the 639 stations suggest that: (1) even nearest stations can have sig-
nificantly different connections and distant stations can have significantly similar con-
nections, (2) connections can be significantly different for different threshold levels, (3)
there is generally an inverse relationship between the clustering coefficient and num-
ber of neighbors, number of all links, and actual links (in the cluster of neighbors), (4)
the clustering coefficient is far more sensitive when the number of neighbors/number of
links is smaller, but has only little or no sensitivity when the latter is larger; and (5) the
high clustering coefficient value obtained for the entire network is not consistent with
the one expected for a random graph, suggesting that the streamflow network is likely
to be small-world or scale-free or some other type.

Although the present results are preliminary, they offer important information about
the connections that possibly exist in the streamflow network, and especially their ex-
tent. The clustering coefficient values, and the actual links, are particularly useful in the
identification of the specific regions where interpolation and extrapolation of stream-
flow data may be more effective and also of the specific stations whose data can be
more reliable for such purposes. For instance, regions consisting of stations with high
clustering coefficient values would generally provide a more accurate estimation of
streamflow when interpolation and extrapolation schemes are employed. It is also im-
portant to emphasize, however, that such a region is identified based on cluster of
actual connections, rather than based on our traditional way of geographic proximity,
nearest neighbors, regional patterns, and linear correlations. The clustering coefficient
values can also offer important clues and guidelines as to the setting up/removal of
streamflow monitoring stations in a region. For instance, if a region consists of stations
with very high clustering coefficients, then installing additional monitoring stations will
not offer any significant benefits. Indeed, one or more monitoring stations from such
a region may be removed and the resources can be used in regions where additional
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stations might offer greater benefits (e.g. in regions where the clustering coefficient
values are low).

Finally, the present study and the results obtained have important implications for
a wide range of issues and associated efforts in streamflow modeling, and hydrologic
modeling in general. Among these are: (1) predictions in ungaged basins (PUB), where
approaches based on nearest neighbors, regionalization, similarity, and other concepts
are commonly adopted, (2) formulation of a catchment classification framework, for
simplification and generalization in our modeling paradigm and better communication
among/between researchers and practitioners; and (3) development of an integrated
framework for water planning and management, including in studies on climate change
impacts on water resources, that involves proper consideration and inclusion of stake-
holders and concepts from a vast number of disciplines, including climate, hydrology,
engineering, environment, ecology, social sciences, political sciences, economics, and
psychology. In view of these, ideas gained from the modern theory of complex net-
works, and network theory at large, seem to have immense potential in hydrology and
water resources.
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Table 1. Characteristics of streamflow stations and data in the United States.

Minimum Maximum Station
Drainage area (km2) 10.62 35224 Minimum: #1188000 (CT)
(4.1 mi?) (13600 mi®) Maximum: #2226000 (GA)
Elevation (m) 0 2996 Minimum: #2310000 (FL)
(9830 ft) Maximum: #7083000 (CO)
Flow mean (m®s™") 0.0549 381.59 Minimum: #11063500 (CA)
(1.938ft°s™") (134761t°s™") Maximum: #2226000 (GA)
Flow standard deviation (m3 5‘1) 0.110 373.75 Minimum: #11063500 (CA)
(3.8881t°s™") (131991t°s™") Maximum: #13317000 (ID)
Flow CV 0.11385 5.56342 Minimum: #6775500 (NE)
Maximum: #6860000 (KS)
Flow skewness 0.45903 15.2588 Minimum: #6775500 (NE)
Maximum: #6860000 (KS)
Flow Kurtosis -0.33223 289.09 Minimum: #6775500 (NE)
Maximum: #6860000 (KS)
Minimum flow (m3 s“) 0 63.91 Minimum: 137 stations
(2257t s7") Maximum: #13317000 (ID)
Maximum flow (m®s™") 0.878 2489 Minimum: #1484500 (DE)
(3113s™) (87900ft°s™") Maximum: #6902000 (MO)
Number of zeros 0 424 Minimum: 502 stations

Maximum: #10258500 (CA)
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§ B. Sivakumar and
Clustering Number of stations within each clustering z F. M. Woldemeskel
coefficient coefficient range for threshold (T) S
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Figure 1. Network in its simplest form, i.e. an undirected network with only a single type of

node and a single type of link.
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Neighbors = 4

Actual connections = 3

Figure 2. Connections in networks and calculation of clustering coefficient: nearest neighbors

and actual connections.
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0 0-4.99 (29 %) 10-49.99 (40 %) 7 >100 (4 %) 0 0-499 (29 %) 10-49.99 (43%) 7 >100 (4 %)
0 5-999(20%) A 50-99.99 (7 %) 0 5-999(18%) A 50-99.99 (6 %)

O 0-049(2%) 1-149(40%) 7 >2(9%)
005-099(48%) A 15-199(1%)

Figure 3. Characteristics of monthly streamflow observed at 639 stations in the United States:
(a) mean; (b) standard deviation; and (c) coefficient of variation.
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Figure 4. Linear correlation for streamflow: average of correlation with (a) all the 638 stations;
(b) nearest 30 neighbors; (c) nearest 15 neighbors; and (d) nearest 5 neighbors.
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© 0.80-1.00 © 0.40-0.59 e 0
© 0.60-0.79 © <040

Figure 5. Clustering coefficients for four correlation thresholds: (a) 0.70; (b) 0.75; (c) 0.80;
and (d) 0.85. The four ranges of 0.8-1.0, 0.6-0.8, 0.4-0.6, and < 0.4 are chosen for better
visualization of results. See Table 2 for additional ranges.
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Figure 6a. Links in streamflow network for threshold T = 0.75. Four nodes (stations) are chosen

for better visualization.
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Figure 6b. Links in streamflow network for threshold 7 = 0.80. Four nodes (stations) are chosen

for better visualization.
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Figure 6c¢. Links in streamflow network for threshold 7 = 0.85. Four nodes (stations) are chosen
for better visualization.
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Figure 7. Relationship between clustering coefficient and number of links: (a) 7 = 0.70; (b)
T =0.75; (¢) T = 0.80; and (d) T = 0.85. Both all links (red circles) and actual links (blue circles)

are presented.
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0.70; (b) T = 0.75; (¢) T = 0.80; and (d) T = 0.85.
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